【设计模式】概览

设计模式

设计模式,即Design Patterns,是指在软件设计中,被反复使用的一种代码设计经验。使用设计模式的目的是为了可重用代码,提高代码的可扩展性和可维护性。。

开闭原则

由Bertrand Meyer提出的开闭原则(Open Closed Principle)是指,软件应该对扩展开放,而对修改关闭。这里的意思是在增加新功能的时候,能不改代码就尽量不要改,如果只增加代码就完成了新功能,那是最好的。

里氏替换原则

里氏替换原则是Barbara Liskov提出的,这是一种面向对象的设计原则,即如果我们调用一个父类的方法可以成功,那么替换成子类调用也应该完全可以运行。

学习设计模式,关键是学习设计思想,不能简单地生搬硬套,也不能为了使用设计模式而过度设计,要合理平衡设计的复杂度和灵活性,并意识到设计模式也并不是万能的。

创建型模式

创建型模式关注点是如何创建对象,其核心思想是要把对象的创建和使用相分离,这样使得两者能相对独立地变换。

创建型模式包括:

  • 工厂方法:Factory Method
  • 抽象工厂:Abstract Factory
  • 建造者:Builder
  • 原型:Prototype
  • 单例:Singleton

工厂方法

┌─────────────┐      ┌─────────────┐
│   Product   │      │   Factory   │
└─────────────┘      └─────────────┘
       ▲                    ▲
       │                    │
┌─────────────┐      ┌─────────────┐
│ ProductImpl │<─ ─ ─│ FactoryImpl │
└─────────────┘      └─────────────┘

工厂方法即Factory Method,是一种对象创建型模式。

工厂方法的目的是使得创建对象和使用对象是分离的,并且客户端总是引用抽象工厂和抽象产品

public interface NumberFactory {
    // 创建方法:
    Number parse(String s);

    // 获取工厂实例:
    static NumberFactory getFactory() {
        return impl;
    }

    static NumberFactory impl = new NumberFactoryImpl();
}

调用方可以完全忽略真正的工厂NumberFactoryImpl和实际的产品BigDecimal,这样做的好处是允许创建产品的代码独立地变换,而不会影响到调用方。

public class NumberFactory {
    public static Number parse(String s) {
        return new BigDecimal(s);
    }
}

实际上大多数情况下我们并不需要抽象工厂,而是通过静态方法直接返回产品,这种简化的使用静态方法创建产品的方式称为静态工厂方法(Static Factory Method)。

抽象工厂

抽象工厂模式和工厂方法不太一样,它要解决的问题比较复杂,不但工厂是抽象的,产品是抽象的,而且有多个产品需要创建,因此,这个抽象工厂会对应到多个实际工厂,每个实际工厂负责创建多个实际产品:

                                ┌────────┐
                             ─ >│ProductA│
┌────────┐    ┌─────────┐   │   └────────┘
│ Client │─ ─>│ Factory │─ ─
└────────┘    └─────────┘   │   ┌────────┐
                   ▲         ─ >│ProductB│
           ┌───────┴───────┐    └────────┘
           │               │
      ┌─────────┐     ┌─────────┐
      │Factory1 │     │Factory2 │
      └─────────┘     └─────────┘
           │   ┌─────────┐ │   ┌─────────┐
            ─ >│ProductA1│  ─ >│ProductA2│
           │   └─────────┘ │   └─────────┘
               ┌─────────┐     ┌─────────┐
           └ ─>│ProductB1│ └ ─>│ProductB2│
               └─────────┘     └─────────┘

这种模式有点类似于多个供应商负责提供一系列类型的产品。

//接口
public interface AbstractFactory {
    // 创建Html文档:
    HtmlDocument createHtml(String md);
    // 创建Word文档:
    WordDocument createWord(String md);
}

// Html文档接口:
public interface HtmlDocument {
    String toHtml();
    void save(Path path) throws IOException;
}

// Word文档接口:
public interface WordDocument {
    void save(Path path) throws IOException;
}





//fast实现
public class FastHtmlDocument implements HtmlDocument {
    public String toHtml() {
        ...
    }
    public void save(Path path) throws IOException {
        ...
    }
}

public class FastWordDocument implements WordDocument {
    public void save(Path path) throws IOException {
        ...
    }
}

public class FastFactory implements AbstractFactory {
    public HtmlDocument createHtml(String md) {
        return new FastHtmlDocument(md);
    }
    public WordDocument createWord(String md) {
        return new FastWordDocument(md);
    }
}



//good实现
public class GoodFactory implements AbstractFactory {
    public HtmlDocument createHtml(String md) {
        return new GoodHtmlDocument(md);
    }
    public WordDocument createWord(String md) {
        return new GoodWordDocument(md);
    }
}

// 实际产品:
public class GoodHtmlDocument implements HtmlDocument {
    ...
}

public class GoodWordDocument implements HtmlDocument {
    ...
}




//alternative
public interface AbstractFactory {
    public static AbstractFactory createFactory(String name) {
        if (name.equalsIgnoreCase("fast")) {
            return new FastFactory();
        } else if (name.equalsIgnoreCase("good")) {
            return new GoodFactory();
        } else {
            throw new IllegalArgumentException("Invalid factory name");
        }
    }
}

建造者

将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。

生成器模式(Builder)是使用多个“小型”工厂来最终创建出一个完整对象。

当我们使用Builder的时候,一般来说,是因为创建这个对象的步骤比较多,每个步骤都需要一个零部件,最终组合成一个完整的对象。

原型

用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。

原型模式,即Prototype,是指创建新对象的时候,根据现有的一个原型来创建。

public class Student {
    private int id;
    private String name;
    private int score;

    public Student copy() {
        Student std = new Student();
        std.id = this.id;
        std.name = this.name;
        std.score = this.score;
        return std;
    }
}

单例

保证一个类仅有一个实例,并提供一个访问它的全局访问点。

单例模式(Singleton)的目的是为了保证在一个进程中,某个类有且仅有一个实例。

因为这个类只有一个实例,因此,自然不能让调用方使用new Xyz()来创建实例了。所以,单例的构造方法必须是private,这样就防止了调用方自己创建实例,但是在类的内部,是可以用一个静态字段来引用唯一创建的实例的

public class Singleton {
    // 静态字段引用唯一实例:
    private static final Singleton INSTANCE = new Singleton();

    // 通过静态方法返回实例:
    public static Singleton getInstance() {
        return INSTANCE;
    }

    // private构造方法保证外部无法实例化:
    private Singleton() {
    }
}

另一种实现Singleton的方式是利用Java的enum,因为Java保证枚举类的每个枚举都是单例,所以我们只需要编写一个只有一个枚举的类即可:

public enum World {
    // 唯一枚举:
	INSTANCE;

	private String name = "world";

	public String getName() {
		return this.name;
	}

	public void setName(String name) {
		this.name = name;
	}
}

实际上,很多程序,尤其是Web程序,大部分服务类都应该被视作Singleton,如果全部按Singleton的写法写,会非常麻烦,所以,通常是通过约定让框架(例如Spring)来实例化这些类,保证只有一个实例,调用方自觉通过框架获取实例而不是new操作符,因此,除非确有必要,否则Singleton模式一般以“约定”为主,不会刻意实现它。

结构型模式

结构型模式主要涉及如何组合各种对象以便获得更好、更灵活的结构。虽然面向对象的继承机制提供了最基本的子类扩展父类的功能,但结构型模式不仅仅简单地使用继承,而更多地通过组合与运行期的动态组合来实现更灵活的功能。

结构型模式有:

  • 适配器
  • 桥接
  • 组合
  • 装饰器
  • 外观
  • 享元
  • 代理

适配器

将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。

public class Task implements Callable<Long> {
    private long num;
    public Task(long num) {
        this.num = num;
    }

    public Long call() throws Exception {
        long r = 0;
        for (long n = 1; n <= this.num; n++) {
            r = r + n;
        }
        System.out.println("Result: " + r);
        return r;
    }
}


Callable<Long> callable = new Task(123450000L);
Thread thread = new Thread(callable); // compile error!
thread.start();



public class RunnableAdapter implements Runnable {
    // 引用待转换接口:
    private Callable<?> callable;

    public RunnableAdapter(Callable<?> callable) {
        this.callable = callable;
    }

    // 实现指定接口:
    public void run() {
        // 将指定接口调用委托给转换接口调用:
        try {
            callable.call();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }
}

Callable<Long> callable = new Task(123450000L);
Thread thread = new Thread(new RunnableAdapter(callable));
thread.start();

InputStreamReader就是Java标准库提供的Adapter,它负责把一个InputStream适配为Reader。类似的还有OutputStreamWriter

桥接

将抽象部分与它的实现部分分离,使它们都可以独立地变化。

桥接模式就是为了避免直接继承带来的子类爆炸。

public abstract class Car {
    // 引用Engine:
    protected Engine engine;

    public Car(Engine engine) {
        this.engine = engine;
    }

    public abstract void drive();
}


public interface Engine {
    void start();
}


public abstract class RefinedCar extends Car {
    public RefinedCar(Engine engine) {
        super(engine);
    }

    public void drive() {
        this.engine.start();
        System.out.println("Drive " + getBrand() + " car...");
    }

    public abstract String getBrand();
}

这样一来,最终的不同品牌继承自RefinedCar,例如BossCar

public class BossCar extends RefinedCar {
    public BossCar(Engine engine) {
        super(engine);
    }

    public String getBrand() {
        return "Boss";
    }
}

而针对每一种引擎,继承自Engine,例如HybridEngine

public class HybridEngine implements Engine {
    public void start() {
        System.out.println("Start Hybrid Engine...");
    }
}

客户端通过自己选择一个品牌,再配合一种引擎,得到最终的Car:

RefinedCar car = new BossCar(new HybridEngine());
car.drive();

使用桥接模式的好处在于,如果要增加一种引擎,只需要针对Engine派生一个新的子类,如果要增加一个品牌,只需要针对RefinedCar派生一个子类,任何RefinedCar的子类都可以和任何一种Engine自由组合,即一辆汽车的两个维度:品牌和引擎都可以独立地变化。

组合

将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。

组合模式(Composite)经常用于树形结构,为了简化代码,使用Composite可以把一个叶子节点与一个父节点统一起来处理。

public interface Node {
    // 添加一个节点为子节点:
    Node add(Node node);
    // 获取子节点:
    List<Node> children();
    // 输出为XML:
    String toXml();
}


public class ElementNode implements Node {
    private String name;
    private List<Node> list = new ArrayList<>();

    public ElementNode(String name) {
        this.name = name;
    }

    public Node add(Node node) {
        list.add(node);
        return this;
    }

    public List<Node> children() {
        return list;
    }

    public String toXml() {
        String start = "<" + name + ">\n";
        String end = "</" + name + ">\n";
        StringJoiner sj = new StringJoiner("", start, end);
        list.forEach(node -> {
            sj.add(node.toXml() + "\n");
        });
        return sj.toString();
    }
}


public class TextNode implements Node {
	private String text;

	public TextNode(String text) {
		this.text = text;
	}

	public Node add(Node node) {
		throw new UnsupportedOperationException();
	}

	public List<Node> children() {
		return List.of();
	}

	public String toXml() {
		return text;
	}
}

装饰器

动态地给一个对象添加一些额外的职责。就增加功能来说,相比生成子类更为灵活。

装饰器(Decorator)模式,是一种在运行期动态给某个对象的实例增加功能的方法。

在Java标准库中,InputStream是抽象类,FileInputStreamServletInputStreamSocket.getInputStream()这些InputStream都是最终数据源。

现在,如果要给不同的最终数据源增加缓冲功能、计算签名功能、加密解密功能,那么,3个最终数据源、3种功能一共需要9个子类。如果继续增加最终数据源,或者增加新功能,子类会爆炸式增长,这种设计方式显然是不可取的。

Decorator模式的目的就是把一个一个的附加功能,用Decorator的方式给一层一层地累加到原始数据源上,最终,通过组合获得我们想要的功能。

             ┌───────────┐
             │ Component │
             └───────────┘
                   ▲
      ┌────────────┼─────────────────┐
      │            │                 │
┌───────────┐┌───────────┐     ┌───────────┐
│ComponentA ││ComponentB │...  │ Decorator │
└───────────┘└───────────┘     └───────────┘
                                     ▲
                              ┌──────┴──────┐
                              │             │
                        ┌───────────┐ ┌───────────┐
                        │DecoratorA │ │DecoratorB │...
                        └───────────┘ └───────────┘

装饰器模式实际上实现了核心功能和附加功能的分离,使得两部分都可以独立地扩展,而具体如何附加功能,由调用方自由组合,从而极大地增强了灵活性。

外观

为子系统中的一组接口提供一个一致的界面。Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。

如果客户端要跟许多子系统打交道,那么客户端需要了解各个子系统的接口,比较麻烦。如果有一个统一的“中介”,让客户端只跟中介打交道,中介再去跟各个子系统打交道,对客户端来说就比较简单。所以Facade就相当于搞了一个中介。

// 工商注册:
public class AdminOfIndustry {
    public Company register(String name) {
        ...
    }
}

// 银行开户:
public class Bank {
    public String openAccount(String companyId) {
        ...
    }
}

// 纳税登记:
public class Taxation {
    public String applyTaxCode(String companyId) {
        ...
    }
}


public class Facade {
    public Company openCompany(String name) {
        Company c = this.admin.register(name);
        String bankAccount = this.bank.openAccount(c.getId());
        c.setBankAccount(bankAccount);
        String taxCode = this.taxation.applyTaxCode(c.getId());
        c.setTaxCode(taxCode);
        return c;
    }
}

很多Web程序,内部有多个子系统提供服务,经常使用一个统一的Facade入口,例如一个RestApiController,使得外部用户调用的时候,只关心Facade提供的接口,不用管内部到底是哪个子系统处理的。

更复杂的Web程序,会有多个Web服务,这个时候,经常会使用一个统一的网关入口来自动转发到不同的Web服务,这种提供统一入口的网关就是Gateway,它本质上也是一个Facade,但可以附加一些用户认证、限流限速的额外服务。

享元

运用共享技术有效地支持大量细粒度的对象。

享元(Flyweight)的核心思想很简单:如果一个对象实例一经创建就不可变,那么反复创建相同的实例就没有必要,直接向调用方返回一个共享的实例就行,这样即节省内存,又可以减少创建对象的过程,提高运行速度。

因此,享元模式就是通过工厂方法创建对象,在工厂方法内部,很可能返回缓存的实例,而不是新创建实例,从而实现不可变实例的复用

在实际应用中,享元模式主要应用于缓存,即客户端如果重复请求某些对象,不必每次查询数据库或者读取文件,而是直接返回内存中缓存的数据。

代理

为其他对象提供一种代理以控制对这个对象的访问。

远程代理

远程代理即Remote Proxy,本地的调用者持有的接口实际上是一个代理,这个代理负责把对接口的方法访问转换成远程调用,然后返回结果。Java内置的RMI机制就是一个完整的远程代理模式。

虚代理

虚代理即Virtual Proxy,它让调用者先持有一个代理对象,但真正的对象尚未创建。如果没有必要,这个真正的对象是不会被创建的,直到客户端需要真的必须调用时,才创建真正的对象。JDBC的连接池返回的JDBC连接(Connection对象)就可以是一个虚代理,即获取连接时根本没有任何实际的数据库连接,直到第一次执行JDBC查询或更新操作时,才真正创建实际的JDBC连接。

保护代理

保护代理即Protection Proxy,它用代理对象控制对原始对象的访问,常用于鉴权。

智能引用

智能引用即Smart Reference,它也是一种代理对象,如果有很多客户端对它进行访问,通过内部的计数器可以在外部调用者都不使用后自动释放它。

行为型模式

行为型模式主要涉及算法和对象间的职责分配。通过使用对象组合,行为型模式可以描述一组对象应该如何协作来完成一个整体任务。

行为型模式有:

  • 责任链
  • 命令
  • 解释器
  • 迭代器
  • 中介
  • 备忘录
  • 观察者
  • 状态
  • 策略
  • 模板方法
  • 访问者

责任链

使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。

责任链模式(Chain of Responsibility)是一种处理请求的模式,它让多个处理器都有机会处理该请求,直到其中某个处理成功为止。责任链模式把多个处理器串成链,然后让请求在链上传递

     ┌─────────┐
     │ Request │
     └─────────┘
          │
┌ ─ ─ ─ ─ ┼ ─ ─ ─ ─ ┐
          ▼
│  ┌─────────────┐  │
   │ ProcessorA  │
│  └─────────────┘  │
          │
│         ▼         │
   ┌─────────────┐
│  │ ProcessorB  │  │
   └─────────────┘
│         │         │
          ▼
│  ┌─────────────┐  │
   │ ProcessorC  │
│  └─────────────┘  │
          │
└ ─ ─ ─ ─ ┼ ─ ─ ─ ─ ┘
          │
          ▼

在实际场景中,财务审批就是一个责任链模式。假设某个员工需要报销一笔费用,审核者可以分为:

  • Manager:只能审核1000元以下的报销;
  • Director:只能审核10000元以下的报销;
  • CEO:可以审核任意额度。

用责任链模式设计此报销流程时,每个审核者只关心自己责任范围内的请求,并且处理它。对于超出自己责任范围的,扔给下一个审核者处理,这样,将来继续添加审核者的时候,不用改动现有逻辑。

public class Request {
    private String name;
    private BigDecimal amount;

    public Request(String name, BigDecimal amount) {
        this.name = name;
        this.amount = amount;
    }

    public String getName() {
        return name;
    }

    public BigDecimal getAmount() {
        return amount;
    }
}

public interface Handler {
    // 返回Boolean.TRUE = 成功
    // 返回Boolean.FALSE = 拒绝
    // 返回null = 交下一个处理
	Boolean process(Request request);
}

ublic class ManagerHandler implements Handler {
    public Boolean process(Request request) {
        // 如果超过1000元,处理不了,交下一个处理:
        if (request.getAmount().compareTo(BigDecimal.valueOf(1000)) > 0) {
            return null;
        }
        // 对Bob有偏见:
        return !request.getName().equalsIgnoreCase("bob");
    }
}


public class HandlerChain {
    // 持有所有Handler:
    private List<Handler> handlers = new ArrayList<>();

    public void addHandler(Handler handler) {
        this.handlers.add(handler);
    }

    public boolean process(Request request) {
        // 依次调用每个Handler:
        for (Handler handler : handlers) {
            Boolean r = handler.process(request);
            if (r != null) {
                // 如果返回TRUE或FALSE,处理结束:
                System.out.println(request + " " + (r ? "Approved by " : "Denied by ") + handler.getClass().getSimpleName());
                return r;
            }
        }
        throw new RuntimeException("Could not handle request: " + request);
    }
}

//也可由handler实行传递

还有一些责任链模式,每个Handler都有机会处理Request,通常这种责任链被称为拦截器(Interceptor)或者过滤器(Filter),它的目的不是找到某个Handler处理掉Request,而是每个Handler都做一些工作,比如:

  • 记录日志;
  • 检查权限;
  • 准备相关资源;

例如,JavaEE的Servlet规范定义的Filter就是一种责任链模式,它不但允许每个Filter都有机会处理请求,还允许每个Filter决定是否将请求“放行”给下一个Filter。这种模式不但允许一个Filter自行决定处理ServletRequestServletResponse,还可以“伪造”ServletRequestServletResponse以便让下一个Filter处理,能实现非常复杂的功能。

命令

将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化,对请求排队或记录请求日志,以及支持可撤销的操作。

命令模式(Command)是指,把请求封装成一个命令,然后执行该命令。

┌──────┐      ┌───────┐
│Client│─ ─ ─>│Command│
└──────┘      └───────┘
                  │  ┌──────────────┐
                  ├─>│ CopyCommand  │
                  │  ├──────────────┤
                  │  │editor.copy() │─ ┐
                  │  └──────────────┘
                  │                    │  ┌────────────┐
                  │  ┌──────────────┐   ─>│ TextEditor │
                  └─>│ PasteCommand │  │  └────────────┘
                     ├──────────────┤
                     │editor.paste()│─ ┘
                     └──────────────┘
public interface Command {
    void execute();
}

public class CopyCommand implements Command {
    // 持有执行者对象:
    private TextEditor receiver;

    public CopyCommand(TextEditor receiver) {
        this.receiver = receiver;
    }

    public void execute() {
        receiver.copy();
    }
}

public class PasteCommand implements Command {
    private TextEditor receiver;

    public PasteCommand(TextEditor receiver) {
        this.receiver = receiver;
    }

    public void execute() {
        receiver.paste();
    }
}



TextEditor editor = new TextEditor();
editor.add("Command pattern in text editor.\n");
// 执行一个CopyCommand:
Command copy = new CopyCommand(editor);
copy.execute();
editor.add("----\n");
// 执行一个PasteCommand:
Command paste = new PasteCommand(editor);
paste.execute();
System.out.println(editor.getState());

实际上,使用命令模式,确实增加了系统的复杂度。如果需求很简单,那么直接调用显然更直观而且更简单。

解释器

给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

解释器模式(Interpreter)是一种针对特定问题设计的一种解决方案

迭代器

提供一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示。

迭代器模式(Iterator)实际上在Java的集合类中已经广泛使用了。实际上,因为Iterator模式十分有用,因此,Java允许我们直接把任何支持Iterator的集合对象用foreach循环写出来。

中介

用一个中介对象来封装一系列的对象交互。中介者使各个对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

中介模式(Mediator)又称调停者模式,它的目的是把多方会谈变成双方会谈,从而实现多方的松耦合。

多方会谈的复杂逻辑:

┌─────────────────┐     ┌─────────────────┐
│  CheckBox List  │<───>│SelectAll Button │
└─────────────────┘     └─────────────────┘
         ▲ ▲                     ▲
         │ └─────────────────────┤
         ▼                       │
┌─────────────────┐     ┌────────┴────────┐
│SelectNone Button│<────│ Inverse Button  │
└─────────────────┘     └─────────────────┘

如果我们引入一个中介,把多方会谈变成多个双方会谈,虽然多了一个对象,但对象之间的关系就变简单了:

            ┌─────────────────┐
     ┌─────>│  CheckBox List  │
     │      └─────────────────┘
     │      ┌─────────────────┐
     │ ┌───>│SelectAll Button │
     ▼ ▼    └─────────────────┘
┌─────────┐
│Mediator │
└─────────┘
     ▲ ▲    ┌─────────────────┐
     │ └───>│SelectNone Button│
     │      └─────────────────┘
     │      ┌─────────────────┐
     └─────>│ Inverse Button  │
            └─────────────────┘

使用Mediator模式后,我们得到了以下好处:

  • 各个UI组件互不引用,这样就减少了组件之间的耦合关系;
  • Mediator用于当一个组件发生状态变化时,根据当前所有组件的状态决定更新某些组件;
  • 如果新增一个UI组件,我们只需要修改Mediator更新状态的逻辑,现有的其他UI组件代码不变。

Mediator模式经常用在有众多交互组件的UI上。为了简化UI程序,MVC模式以及MVVM模式都可以看作是Mediator模式的扩展。

备忘录

在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。

备忘录模式(Memento),主要用于捕获一个对象的内部状态,以便在将来的某个时候恢复此状态。

标准的备忘录模式有这么几种角色:

  • Memonto:存储的内部状态;
  • Originator:创建一个备忘录并设置其状态;
  • Caretaker:负责保存备忘录。

实际上我们在使用备忘录模式的时候,不必设计得这么复杂,只需要对类似TextEditor的类,增加getState()setState()就可以了。

public class TextEditor {
    private StringBuilder buffer = new StringBuilder();

    public void add(char ch) {
        buffer.append(ch);
    }

    public void add(String s) {
        buffer.append(s);
    }

    public void delete() {
        if (buffer.length() > 0) {
            buffer.deleteCharAt(buffer.length() - 1);
        }
    }
}



public class TextEditor {
    ...

    // 获取状态:
    public String getState() {
        return buffer.toString();
    }

    // 恢复状态:
    public void setState(String state) {
        this.buffer.delete(0, this.buffer.length());
        this.buffer.append(state);
    }
}

观察者

定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。

观察者模式(Observer)又称发布-订阅模式(Publish-Subscribe:Pub/Sub)。它是一种通知机制,让发送通知的一方(被观察方)和接收通知的一方(观察者)能彼此分离,互不影响。

┌─────────┐      ┌───────────────┐
│  Store  │─ ─ ─>│ProductObserver│
└─────────┘      └───────────────┘
     │                   ▲
                         │
     │             ┌─────┴─────┐
     ▼             │           │
┌─────────┐   ┌─────────┐ ┌─────────┐
│ Product │   │  Admin  │ │Customer │ ...
└─────────┘   └─────────┘ └─────────┘
//not Observer Pattern
public class Store {
    Customer customer;
    Admin admin;

    private Map<String, Product> products = new HashMap<>();

    public void addNewProduct(String name, double price) {
        Product p = new Product(name, price);
        products.put(p.getName(), p);
        // 通知用户:
        customer.onPublished(p);
        // 通知管理员:
        admin.onPublished(p);
    }

    public void setProductPrice(String name, double price) {
        Product p = products.get(name);
        p.setPrice(price);
        // 通知用户:
        customer.onPriceChanged(p);
        // 通知管理员:
        admin.onPriceChanged(p);
    }
}



//引用一个ProductObserver接口,任何人想要观察Store,只要实现该接口,并且把自己注册到Store即可
public class Store {
    private List<ProductObserver> observers = new ArrayList<>();
    private Map<String, Product> products = new HashMap<>();

    // 注册观察者:
    public void addObserver(ProductObserver observer) {
        this.observers.add(observer);
    }

    // 取消注册:
    public void removeObserver(ProductObserver observer) {
        this.observers.remove(observer);
    }

    public void addNewProduct(String name, double price) {
        Product p = new Product(name, price);
        products.put(p.getName(), p);
        // 通知观察者:
        observers.forEach(o -> o.onPublished(p));
    }

    public void setProductPrice(String name, double price) {
        Product p = products.get(name);
        p.setPrice(price);
        // 通知观察者:
        observers.forEach(o -> o.onPriceChanged(p));
    }
}

状态

允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。

状态模式(State)经常用在带有状态的对象中。

策略

定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换。本模式使得算法可独立于使用它的客户而变化。

策略模式:Strategy,是指,定义一组算法,并把其封装到一个对象中。然后在运行时,可以灵活的使用其中的一个算法。

模板方法

定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

访问者

表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作。

访问者模式(Visitor)是一种操作一组对象的操作,它的目的是不改变对象的定义,但允许新增不同的访问者,来定义新的操作。

设计模式 - 廖雪峰的官方网站 (liaoxuefeng.com)

Licensed under CC BY-NC-SA 4.0
Last updated on Aug 06, 2022 00:00 UTC
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy